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Fredholm integral equations of the second kind are obtained and investigated for various boundary 

conditions on one edge of a wedge which enables one to represent the corresponding Green’s functions by 

integrals of Neumann series in powers of (1 - 2~). Contact problems of the action of a punch in the form of 

an elliptic paraboloid on an elastic spatial wedge are studied. The asymptotic method of ‘“large A” [l] is used 

to solve the integral equations of these problems. The results of the numerical analysis are compared with a 

well-known contact problem for a half-space [2.3]. 

AN EXACT solution of the first fundamental boundary-value problem for an elastic incompressible 
spatial wedge has previously been obtained [4] using a Kontorovich-Lebedev integral transforma- 
tion on the real axis and the hypothesis was put forward that, in the case of a Poisson’s ratio vf V5, 
the solution of this problem must be obtained in the form of an expansion in powers (1 - 2~). A 
Kontorovich-Lebedev integral transformation in the complex plane was subsequently used [5, S] to 
construct the solution of the first fundamental boundary-value problem in the theory of elasticity for 
a spatial wedge. In the symmetrical case (sliding support of one face of the wedge), this problem 
reduces [S] to solving a Fredholm integral equation of the second kind. 

1. Using cylindrical coordinates r, q,z, where the z axis is directed along an edge of the wedge, let 
us consider a concentrated unit force which acts on the cp = CY plane of a spatial elastic wedge with an 
aperture angle cy. The other plane of the wedge is assumed either to be free of stresses (problem a) 
or to be lying without friction on an undeformed foundation (problem 6) or to be rigidly fixed 
(problem c). Here and henceforth, we shall assume for simplicity that the problem is symmetrical 
with respect to z. The boundary conditions under the assumptions which have been made have the 
form 

(1.2) 

We will express the stresses and displacements in terms of three harmonic functions using 
well-known formulas [S] and the harmonic functions themselves will be represented by Fourier- 
Kontorovich-Lebedev integrals in the complex plane. On introducing these representations into 
(l_ 1) and (I .2) and applying a number of results of the theory of functions of a complex variable [6], 
we finally arrive at Fredholm equations of the second kind in the functions Cp, (u) (m = 1,2,3,4) in 
terms of which the required displacements v (r, CY, z) (the parameter &X > 0) are expressed: 
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(14 

The two Fredholm integral equations (1.3), when m = 1, 2, correspond to problem a, while a 
single integral equation (1.3) with m = 3 and m = 4 corresponds to problems b and c, respectively. 
For a fixed px> 0, the right-hand side of the integral equation (1.3) does not lie in the space 
&(O, 00) in which an integral equation similar to (1.3), (1.5) was treated [6], but belongs to a space 
of functions which are continuously bounded on the semi-axis CM(O, CQ). We note that the functions 
L,(u,y) are of constant sign when m = 1, 2, 3, O<U, y<w, 0 <a < 27r, which facilitates the 
calculation of the norms in CM (0, ~0) of the corresponding integral operators in (1.3). The values of 
these norms, which are equal to (1 - 2~) qm , m = 1, 2, were found by numerical integration with an 
accuracy to within 1% for different a = w/4: 

4: 0.4kl 0208 II.29336 0.223 O.lctO 0.056234 
q2 1.148 1.301 0.04231 0.02134 0.08913 0.01524 

It follows from this in the case of problem a that, when (Y = 2/~r, for example, the solution of Eq. 
(1.3) when m = 2 can be represented by a Neumann series when the condition (1 - 2~) 1.301< 1 or 
v > 0.116 is satisfied and for any v E [0, l/2] when (Y = 37r/4. By comparing expressions (1.5) and (1.4) 
and using the values of q1 which have been presented above, we arrive at the conclusion that, in the 
case of problem b for OL = nn/8, such a representation of the solution is also possible for every v. 
Estimates and calculations carried out for case c show that, when a = rn/4 (n = 1, 2, 3, 5, 6), 
v = 0.25, v = 0.30 and v = 0.35, a solution of the integral equation (1.3) can also be constructed by 
the method of successive approximations. After solving the integral equations (1.3), the displace- 
ment v (r, a, z) in the case of problem a, for example, is found using the formula 
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.(r,a,z)=p-52’ ‘sh 1s -y- w, (4 a, (u) - IV, (4 q (UN x 
00 

X Ki, (pr) COS fiZ COS b&l d/3 du (1.7) 

We now turn our attention to the fact that, as follows from (1.3), the functions @,n(u), m = 1,2 in 
formula (1.7) are also dependent on Bx. 

2. Now let a rigid punch which is elliptic in a plan view and with a base which is described by the 
functionf(r, z), which is even with respect to z, be pressed into the plane cp = (Y of the wedge with a 

force P which is applied on the z = 0 axis at a distance H from the edge of the wedge. Without any 
loss of generality, we shall treat the case which is of the greatest interest in applications when the 
surface of the punch is an elliptic paraboloid, that is, 

i (r, Z) = (r - u)VZR, -+ z~/~H~, R, < R2 

Let us assume that the unknown contact zone is an ellipse 1R: (Y - a)‘/~* + z2/b2 = 1, a > c. Under 
the action of the force P, the punch settles by an amount 6 and rotates by an angle y about the line 
r = a. The plane cp = cx is not subject to loads outside the contact zone. We will neglect the frictional 
forces between the wedge and the punch. One of the conditions (1.2) is satisfied in the cp = 0 plane. 

It is required that the distribution of the normal contact stresses under the punch 
oV (r, CX, z) = -4 (r, z) [(r, z) E 01 be found and the quantities a, b, c, 6, y and H be determined. 

The dimensionless parameter A, which has been introduced here, characterizes the relative 
remoteness of the contact region from the edge of the wedge. We note that the formulation of the 
contact problem which has been presented above is not unique and can be modified. 

With a knowledge of the displacements of the form of (1.7), the integral equation of this problem 
can be written as follows: 

++SS,(x,,)dQ~~ sh TCUW~ (u, gX)KiU(Br)cOsB(~-Yy)dSdu = 
u 00 

=6+y(r_u)q+&, (r*z)fzQ (2.1) 

- W$ (u) I1s” (cl, + Ki, (PX)] 

Here A," (m = 1, 2, 3, 4) are integral operators and the values of k = 1, 2, 3 correspond to 
problems a, b and c, respectively. In order to solve the integral equation (2.1), we shall use the 
asymptotic method of “large A” [l] which is efficient when the contact region is sufficiently remote 
from the edge of the wedge. Using well-known theorems, it is possible to prove the validity of the 
term-by-term integration with respect to u and p of the functional series in the kernel of Eq. (2.1). 
By using the value of the integral [7,8] 

ODOO 
4 

.r ss 
ch XUKiu (fix) Ki, @r)COSP(z- y)dfidu = + 

00 

R = i(r -- A.)’ + (z - 9)’ 

we separate out its singular part from the kernel of the integral equation (2.1). This singular part is 
identical to the kernel of the well-known contact problem for an elastic half-space [2,3,9] 
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(2.2) 

F (5, y, r, Z) := & $ i sh zcu (If’, (~9 BJ$- cth ZuKiu (82)) X 
0; 

x Kj, @r)cos 6 (z - y) dp du 

Next, we use the following dimensionless quantities and notation (we shall omit the primes): 

br’ z ,- _ a, bx’ :_: x - a, bz’ =: z, by’ = y, bJj’ = 8, bc’ = c, 

bR’ = H 

bH’ - H, 2CbsP’ == (1 - v) P, 2cq’ (z’ , y’) tr= (1 - v) ‘I (2, y) 

F’ (a~‘, y’, F’, z’) - bF (5, y, r, z) 

(2.3) 

Lemma. The function F(x, y, r, z) is continuous as well as all its derivatives when (x, y), 
(r,z)~Q. Whenh>I+c(ldar<2~),X>ol~‘+c(c/2~a~l),h>~\/1+~~(l+~~)~~’ (O<CX~C/ 
2), the function F(x, y, r, z) [(x, y), (r, z)Efi] can be represented by the absolutely convergent 
series 

F (5, y, r, z) = 2 f’ ‘“;;* ” ‘) (2.4) 
tl=l 

where f,, (x, y, Y, z) are certain polynomials. 
Expansion (2.4) is obtained by term-by-term integration of the functional series in the expression 

for F(x, y, r, z) using known integrals and representations [7,8] 

P+!/,(l +W) -= F(-$--iu,++ ir.e,i;-T) (2.5) 

x [(&a)l]2 (Cl’ i” + cl1 ng) x i, n=O 

’ ‘ti [(f -!- 2F.Y + (g -+ g)“) [(f + 2k)” + (u - g)*J, n = 1.2,. . . 1 I 
+ <z 

k=O 

and expressions similar to them. In formulas (2.5), F(a, b, c; x) is a hypergeometric Gaussian 
function which is expanded in series. Terms in which r or x occur in the denominator are expanded 
in Taylor series of powers of r/X or x/h. Since all the series converge absolutely for the h indicated in 
the lemma, they converge for any order of summation and they can be regrouped in the form of 
(2.4). Here, it is easy to determine the explicit form of the functions fn(x, y, r, z), n = 1,2, . . . . 

Now, by expanding the solution of integral equation (2.2), (2.4) in the form 

q(5.g) z.z 2 q$y) (2.6) 
n==o 
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substituting (2.6) into (2.2) and (2.4) and equating terms of similar powers of A, we obtain an infinite 
system of integral equations in q,(x, y ) (n = 1,2, . . .). 

1. 
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qj’ = $ s sh q F’Vk (U) Bk” (Ii“ (U,, y)} du, k = 29 3, Xi” = Xi 

0 
0000 
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The values of the constants, calculated using formulas (2.8) when o( = nn/4 for problems a, b and 

c (k = 1, 2, 3) and v = 0, 3 are shown in Table 1. 
In the successive solution of Eqs (2.7), it can be shown that their right-hand sides are always 

polynomials in r and z and their solution can therefore be found in closed form using the formulas in 
Sec. 52 of [9]. Here, each function qn (x, y ) (n = 0, 1, . .) has a root singularity on the boundary afl 
of the ellipse of contact. It is necessary to set up the condition q(x, y ) = 0, (x. y ) ER by virtue of the 
smoothness of the selected shape of the base of the punch. It follows from the results in [2] that the 
existence of such a solution which is bounded on &I in the given formulation of the problem will 
depend on the number of terms which are retained in the expansion (2.6) and can be constructed in 
the case being considered here if, in (2.6), we confine ourselves to an accuracy of up to 0(hm4). By 
invoking the integral conditions for the equilibrium of the punch 

isq(x, y)dxdy = P, $Sq(w)xdxdy - P(H--) 
R n 

(2.9) 

and introducing notation by means of the formulas 
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TABLE I 

n a0 al Xl xz1° x3 
20 

x3 
11 

x3 

Problem a 

1 21.16 -10.26 27.56 14.39 10.40 7.428 7.050 

2 1.378 -0.4499 8.224 4.847 4.932 1.976 1.620 

3 0.07944 -0.01992 0.4103 0.2532 0.2620 0.09904 0.09262 

Problem b 

1 -0.4008 0.8749 1.140 0.7311 0.6741 0.3048 0.3570 

3 -7.452 x lo-‘6.022 x lo-” 0.04076 0.02465 0.02176 0.01082 0.0180 

5 -0.2011 0.03358 6.429 x 1O-3 3.640 x 1O-3 2.376 x lo-” 1.880 x 1O-3 2.286 x 1O-3 

Problem c 

1 -1.561 2.308 -0.02224 -0.01112 0.02723 -0.01703 -0.03080 

2 -0.5222 0.1355 0.01677 8.383 x lo-‘-6.449 x 1O-4 6.331 x 1O-3 9.500 x 1O-3 

5 -0.3010 0.04930 -4.778 x 1O-3-2.389x 10-“-5.400x 10-4-1.585 x 1O-3 -2.134 x 1O-3 

S 
(i$cz)E-22EK soyz 2(1--2c~)E+c~(3@---i)~ 

ll=v---* &?(I -ezy 3@(1--ctp 

S 20 = 
(3-CyK --r.“,- $1 E ) 

Y(1 
f. = 38 (PII -s,,&,) 

(2.10) 
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fll = $- 
f1a = (a1 - 2%) fa - %l, 
f13 == %I, - I% - 2%) I2 

nefu f‘4 z.z - - - 
dw%~ 

2nc fls__-T- _f*+~(__~~~~~+~)] 
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fi6 =__+_ [/s+ _g_(J&_-s-q)] 

i - ~[f*(f,*-_ff,)-~-(fr-_ffR)] I7 - 

f 
LCSOO fz 

Is=------ --- ill E ! c’ f~-*fl3)-f~(fl*--~~-f8)] 

fro = fl + f4 + _dk&!d. [f,(+~-$!L)-f4(+-*)] 

f*o~f*+f,+ 2-qpqf2(+-g-)-f~(+-~)] 

where E = E[v(l -c’)], K = K[v’(l -c’)] are complete elliptic integrals, we ~nally.obtain 

g(z,y) =g i-p-+, N =-h (2.11) 

B 2hfrr (1 - fll!lO -- (fl~~rs~~flrfrr + fl?)lkq 
- = 2s’o&( 1 - flhl)=u-l2 - In) (fIlfl0 -I- fIC)F A 

(2.12) 

Formulas (2.11)-(2.15) determine the solution of the problem in question with an accuracy up to 
0(X-“). Equation (2.12) served for the determination of c or the eccentricity of the contact ellipse 
c = 2/l - c2. It is then possible to find b from Eq. (2.13) and this means also the values of a and 6 
[dimensional see (2.3)]. The extent of the embedding and the skewness of the punch are determined 
from (2.14) and (2.15), respectively. 

When X-+ CT;, the solution (2.11)-(2.15) reduces to the well-known solution of Lur’ye [3] of a 
contact problem on the embedding of an elliptic paraboloid into an elastic half-space. 

3. Let us carry out a numericai analysis of the solution (2.11)-(2.15), taking problem a with 01= 7r/2, v = 0.3 
as an example (it is analogous for other values of CX). 

A plot of relation (2.12), which relates the ratio of the semi-axes of the contact ellipse c to the ratio of the 
radii of curvature of the punch RI/R2 = BIA when h = 2 and h = CQ is shown in Fig. 1. The calculations show 
that, whea 0.1 S cSO.9, the difference between the corresponding values of RI IRz for A = 10 and A = 00 does 
not exceed 0.1%. The quantity 6/B from (2.14) when A = 00 tends extremely slowly to its limiting value and, for 
example, when h = 10, c = 0.1, differs from it by 15%. Hence, the closeness of the contact region to the edge of 
the wedge has a far greater effect on the extent of embedding of the punch than on the eccentricity of the 
contact ellipse. The quantity y/B is negative and of order of magnitude lo-’ when A = 4, 0.1 ~c~0.9 and 
y/R--+0 when h+ m (31. If follows from (2.3). (2.13) and (2.15) that the quantity 6 is proportional to Pz” (here, 
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FIG. 1. 

F and P are dimensional) [3]. It is seen from (2.3), (2.13) and (2.15) that the angle y is proportional to the 
dimensional magnitude of P1’3. 

Plots of the dependence of the quantities 

~f+‘~~G”, 
a]=- - 

PC7 (1 I,)'/;' 
a* r= - _E_ (;T)‘; 

- v 'I* 

(6 and P are dimensional here) on c are shown for different A in Fig. 2 by the solid and dashed lines, 
respectively. It is seen that, for certain (not very large) A, the embedding of the punch can become larger as the 
shape of the contact region approaches a circular shape. 

Formulas (2.11) show that the force is applied at the centre of the contact ellipse and that the distribution of 
the contact stresses is symmetrical about the axes of symmetry of this ellipse. It turns out that the terms which 
take account of the asymmetry of the function q (x, y ) and of the point of application of the force have an order 
of magnitude of hm4. In order to take account of them, that is, to solve integral equation (2.2) with an accuract 
of O(h-“) it is possible to specify only one of the quantities RI or Rz and, here, RI JR2 will be determined during 
the course of the construction of a bounded solution of the type (2.11). 

The values of the quantity fy3 = %nq(x, 0)/P, calculated using (2.11) at several points of the contact region 
for RllRz = 0.5 and for different h are given below. 

X 0 0.2 0.4 0.6 

(Ye A = 2, c = 0.6230 1.605 1.520 1.231 0.4321 
(Ye A = 4, c = 0.6296 1.588 1.506 1.227 0.4813 
(~~X==~,c=O.6306 1.586 1.504 1.226 0.4880 

In conclusion, we note that the method of “large h” only enables one, within the framework of a reasonable 
formulation of the problem and subject to the condition q(x, y ) = 0, [(x, y) E aa], to determine the contact 
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eliipse and other quantities to a limited degree of accuracy. In the case of a punch with planar base, when the 
solution of (2.2) is sought in a class of functions having a root singularity on ?J~I, all the required quantities can 
be found to any degree of accuracy (in this case, the contact ellipse is assumed to be known). 
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A new effective criterion is proposed for the validity of Hadamard’s condition in a non-linearly elastic 

compressible body. The verification of Hadamard’s condition reduces to analysing a simply structured 

system of inequalities, so that its validity can be inv~stigatcd by anaiytical means, using the same technique 

for all compressjbl~ materials. 

INTRODUCTION 

IT MAS been shown [l] that for an isotropic incompressible material Hadamard’s condition, 
according to which the velocities of propagation of plane waves of small amplitude in a uniformly 
stressed elastic medium must be real [2,3], is equivalent to a system of nine elementary inequalities. 
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